
Вопрос задан 22.06.2023 в 10:27.
Предмет Геометрия.
Спрашивает Досбол Таир.
Периметр трапеции описанный около окружности равен 116, а большая из боковых сторон равна 36.
Найдите радиус вписанной окружности

Ответы на вопрос

Отвечает Лошкарёв Андрей.
Ответ:
3,2 радиус окружности.Ето получается что 116 мы делимна 36.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения радиуса вписанной окружности в трапеции, описанной вокруг окружности, мы можем воспользоваться следующими свойствами:
- Периметр трапеции равен сумме всех ее сторон.
- Вписанная окружность касается каждой из сторон трапеции в ее средней точке.
Пусть:
- и - основания трапеции (где - большее основание),
- и - боковые стороны трапеции,
- - центр вписанной окружности,
- - радиус вписанной окружности.
Так как и равны, а , то .
Пусть и - точки касания вписанной окружности с и соответственно.
Теперь давайте составим уравнение для периметра трапеции:
Теперь у нас есть уравнение:
Так как и - это длины двух равных отрезков, мы можем разделить это уравнение пополам:
Теперь заметим, что и - это радиусы вписанной окружности, то есть . Таким образом, мы получаем:
Теперь можем найти радиус :
Итак, радиус вписанной окружности равен 11.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili