
сумма длин трех любых сторон параллелограмма равна 64 найдите сумму двух противоположных сторон
параллелограмма

Ответы на вопрос

х + х + у = 64
2х + у = 64
у = 64 - 2х
подставляем У в уравнение
х + у + у = 64
х + 2(64 - 2х) = 64
х + 128 - 4х = 64
3х = 64
тогда сумма двух сторон



Для решения этой задачи давайте введем обозначения. Пусть a, b и c - длины трех любых сторон параллелограмма. Также известно, что сумма этих длин равна 64: a + b + c = 64.
В параллелограмме противоположные стороны равны. Пусть эти стороны обозначаются как x и y. Тогда сумма двух противоположных сторон параллелограмма равна x + y.
Так как параллелограмм имеет две пары противоположных сторон, то для любой пары противоположных сторон справедливо:
1. x + y = a + b (по определению параллелограмма). 2. x + y = b + c (аналогично для другой пары противоположных сторон).
Исходя из этих равенств, мы можем выразить a и c через x и y:
a = x + y - b c = x + y - b
Теперь подставим эти выражения в уравнение, описывающее сумму длин сторон параллелограмма:
(x + y - b) + b + (x + y - b) = 64
Упростим это уравнение:
2x + 2y = 64
Разделим обе стороны на 2:
x + y = 32
Таким образом, сумма двух противоположных сторон параллелограмма равна 32.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili