
Две окружности касаются внутренним образом в точке M . Секущая m пересекает окружности
последовательно в точках A , B , C , D . Докажите, что угол AMB = углу CMD.

Ответы на вопрос

Ответ:
...........................................................
Объяснение:




Given Information:
We are given that two circles touch internally at point M. A secant m intersects the circles sequentially at points A, B, C, and D. We need to prove that angle AMB is equal to angle CMD.Approach:
To prove that angle AMB is equal to angle CMD, we can use the properties of tangents and secants intersecting circles. We will break down the proof into smaller steps.Proof:
1. Let's draw the diagram with the given information. We have two circles touching internally at point M. The secant m intersects the circles at points A, B, C, and D. The diagram should look like this:``` A-----B / \ / \ M \ / \ / \ C-----------------D ```
2. Since the two circles touch internally at point M, we can draw tangents to the circles at point M. Let's label the points where the tangents intersect the secant as E and F. The diagram now looks like this:
``` A-----B / \ / \ M \ / \ \ / \ \ C-----E-----------D ```
3. Since the tangents are drawn from the same point M, we know that ME = MF. This is because tangents drawn from an external point to a circle are equal in length.
4. Now, let's consider the triangles AME and DME. We have: - Angle AME = Angle DME = 90 degrees (tangent is perpendicular to the radius at the point of contact) - ME = ME (common side) - ME = ME (proved in step 3)
Therefore, by the Side-Angle-Side (SAS) congruence criterion, triangles AME and DME are congruent.
5. Since triangles AME and DME are congruent, their corresponding angles are equal. Therefore, angle AME = angle DME.
6. Now, let's consider the triangles AMB and CMD. We have: - Angle AMB = Angle AME (corresponding angles of congruent triangles) - Angle CMD = Angle DME (corresponding angles of congruent triangles)
Therefore, angle AMB = angle CMD.
7. Hence, we have proved that angle AMB is equal to angle CMD.
Conclusion:
We have successfully proved that angle AMB is equal to angle CMD using the properties of tangents and secants intersecting circles.

Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili