Вопрос задан 29.06.2018 в 16:43. Предмет Геометрия. Спрашивает Gavrilov Leonid.

Высота, проведенная в ромбе из вершины тупого угла, образует со стороной ромба угол в 30°.

Вычислить периметр ромба, если его меньшая диагональ равна 5,2 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Афанасьев Саша.

Обозначим ромб ABCD (В и D - тупые углы). Из B проведем высоту BH на AD. Получится прямоугольный треугольник ABH, в котором угол B =30 град. Тогда AH=x   AB=2x. Но раз AH=x. тогда HD тоже равно х, так как стороны ромба равны. Тогда треугольник ABD равнобедренный и BD = AB = 5.2. Тогда периметр = 5,2*4= 20,8

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос