
Вопрос задан 29.06.2018 в 16:43.
Предмет Геометрия.
Спрашивает Gavrilov Leonid.
Высота, проведенная в ромбе из вершины тупого угла, образует со стороной ромба угол в 30°.
Вычислить периметр ромба, если его меньшая диагональ равна 5,2 см.

Ответы на вопрос

Отвечает Афанасьев Саша.
Обозначим ромб ABCD (В и D - тупые углы). Из B проведем высоту BH на AD. Получится прямоугольный треугольник ABH, в котором угол B =30 град. Тогда AH=x AB=2x. Но раз AH=x. тогда HD тоже равно х, так как стороны ромба равны. Тогда треугольник ABD равнобедренный и BD = AB = 5.2. Тогда периметр = 5,2*4= 20,8


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili