Вопрос задан 15.06.2023 в 20:16. Предмет Геометрия. Спрашивает Урбанович Егор.

Дано вектори c і d, |c|=1, |d|=√3, (c,d)=150 Знайти 2c-3d

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Савин Максим.

Ответ:     | 2с - 3d | = 7 .

Объяснение:

Вектори c і d, |c|=1, |d|=√3, (c^d)=150° ;

тоді вектор  | 2с - 3d | = √( 2с - 3d )² = √( 4c² - 12c*d + 9d² ) =

= √( 4* 1² - 12* 1 * √3 *cos150° + 9*( √3 )² ) = √( 4 + 12√3 *cos30° +27 ) =

= √( 31 + 12√3 *√3/2 ) = √ ( 31 + 18 ) = √49 = 7 ;     | 2с - 3d | = 7 .

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала, давайте разберемся с данными векторами c и d. У нас есть вектор c и вектор d, где |c| равно 1 (то есть длина вектора c равна 1), |d| равно √3 (то есть длина вектора d равна корню из 3), и (c,d) равно 150 (то есть скалярное произведение векторов c и d равно 150).

Для того чтобы найти 2c - 3d, мы можем использовать свойства векторов и скалярное умножение. Давайте начнем с вычисления 2c:

1. Умножение вектора на скаляр: Умножение вектора на скаляр просто умножает каждый компонент вектора на этот скаляр. Таким образом, умножение вектора c на 2 даст нам новый вектор, где каждый компонент умножен на 2.

Теперь вычислим 3d:

2. Умножение вектора на скаляр: Аналогично, умножение вектора d на 3 даст нам новый вектор, где каждый компонент умножен на 3.

И, наконец, найдем разность 2c - 3d:

3. Разность векторов: Просто вычитаем каждый компонент второго вектора из соответствующего компонента первого вектора.

Давайте продолжим с вычислениями для получения итогового результата.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос