
Вопрос задан 28.06.2018 в 01:18.
Предмет Геометрия.
Спрашивает Новосёлов Данил.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM
равна 89. Найдите пожалуйста площадь четырехугольника ABMN

Ответы на вопрос

Отвечает Котовских Алиса.
MN - средняя линия треугольника ABC, по теореме о средней линии NM=AB/2 => 2NM=AB Проведем высоту из вершины С. SCNM=1/2*CE*NM=89 (по условию).CE*NM=178 Рассмотрим треугольник ACD, NE||AD и идет из середины стороны AC, следовательно NE - средняя линия для треугольника ACD, значит CE=ED. ABMN - трапеция (по определению), тогда SABMN=(NM+AB)/2*ED. Подставляем ранее выявленные равенства, получаем: SABMN=(NM+2NM)/2*CE=3NM/2*CE=1,5NM*CE=1,5*178=267



Отвечает Аришина Аня.
....................



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili