Вопрос задан 25.06.2018 в 23:05. Предмет Геометрия. Спрашивает Грачев Максим.

Площадь треугольника ABC равна 80. Биссектриса AD пересекает медиану ВК в точке Е, при этом BD :

CD =1:3. Найдите площадь четырёхугольника EDCK. Пожалуйста помогите по подробнее и если можно, то через площадь треугольника там где синус и сво-во биссектрисы. Заранее спс!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Горун Софія.

Площадь треугольника равна половине произведения длины его основания на высоту.
S Δ=ah
Если высоты треугольников равны, то их площади относятся как основания. 
Медиана делит треугольник на два равновеликих ( т.е равных по площади) треугольника, так как их основания равны, а высота  - общая.  
S ABK =S BKC=80:2=40
AB:AC=1:3,т.к. BD:DC=1:3
АК=КС (ВК- медиана)
АС=2 АК  
так как АВ:АС=1:3, то
АВ:2АК=1:3
Умножив числители отношения на 2, получим
АВ:АК=2:3
АD - биссектриса угла А, 
АЕ биссектриса и делит ВК в отношении АВ:АК
ВЕ:ЕК=2:3
Треугольники АВЕ и АЕК имеют общую высоту. 
Если высоты треугольников равны, то их площади относятся как основания. 
S ABE =S AEK =2:3
S AВК равна 40, АЕ делит ее в отношении 2:3
S ABE=S ABK:5*2=40:5*2=16
Треугольники АВD  и ADC  имеют общую высоту АН. 
S ABD:S ADC=1:3
S ABD=S ABC:(1+3)=80:4=20
S BED =S ABD-S Δ ABE=20–16=4
S KEDC=S Δ КBC - S Δ BED=40-4=36
Ответ: 36

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос