
Вопрос задан 22.06.2018 в 18:20.
Предмет Геометрия.
Спрашивает Романова Карина.
В трапеции АВСД с основаниями АД и ВС диагонали пересекаются в точке О. Площадь треугольника ВОС
равна 4, площадь треугольника АОД равна 9. Найдите площадь трапеции

Ответы на вопрос

Отвечает Курганский Денис.
Треугольники, опирающиеся на основания трапеции, подобны)))
ВС = k * AD и высоты подобных треугольников тоже пропорциональны
h(ВС) = k * h(AD) h(BС) + h(AD) = H --высота трапеции
площади подобных фигур относятся как квадрат коэффициента подобия)))
S(BOC) / S(AOD) = 4 / 9 = k² ---> k = 2/3
S(ABCD) = (BC+AD)*H / 2 = (k*AD+AD)*(h(BC) + h(AD)) / 2 =
= AD*(k+1)*h(AD)*(k+1) / 2 = ( AD*h(AD) / 2 )*(k+1)² = S(AOD) * (k+1)² =
= 9 * 25 / 9 = 25


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili