Вопрос задан 31.03.2021 в 09:08. Предмет Геометрия. Спрашивает Иванов Даниил.

Відрізок АS перпендикулярний до площини трикутника АВС. Знайдіть відстань від точки А до точки С,

якщо SA=3 см SC=5 см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Багышова Валерия.

4 см. Розв'язання завдання додаю


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Щоб знайти відстань від точки А до точки С на площині трикутника ABC, ми можемо скористатися теоремою Піфагора для прямокутного трикутника ASC.

Оскільки відрізок AS перпендикулярний до площини трикутника ABC, він буде катетом цього прямокутного трикутника.

Маємо: AS = 3 см, SC = 5 см.

Застосуємо теорему Піфагора: AC^2 = AS^2 + SC^2.

Підставляємо відомі значення: AC^2 = 3^2 + 5^2, AC^2 = 9 + 25, AC^2 = 34.

Щоб знайти саму відстань AC, потрібно взяти квадратний корінь обох боків рівняння: AC = √34.

Таким чином, відстань від точки А до точки С дорівнює приблизно 5.83 см (заокруглено до сотих).

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос