
Вопрос задан 24.02.2021 в 20:21.
Предмет Геометрия.
Спрашивает Гвоздиков Николай.
1.DABC - пирамида, в основании которой лежит правильный треугольник со стороной 4 см. DA ⊥(ABC),
угол между плоскостью (BDC) и плоскостью основания (ABC) равен 45°. Найти Sбок. пирамиды. 2.ABCDA1B1C1D1 - прямой параллелепипед, в основании лежит параллелограмм ABCD, со стороной a. ∠А - острый угол, прилежащий к этой стороне= 30° . Вторая сторона= 3а. Угол Между плоскостью (A1DB1) и плоскостью (ABCD)= 45°. Найти а) Высоту параллелограмма б) высоту параллелепипеда в) Sбок г) Sполн.



Ответы на вопрос

Отвечает Брага Мария.
1).Угол между плоскостями - это угол, образованный перпендикулярами, расположенными в этих плоскостях, опущенными в точку на линии пересечения плоскостей. Линия пересечения плоскостей АВС и DВС - прямая ВС.
Перпендикуляры к линии пересечения АН (высота равностороннего
треугольника АВС) и DН (апофема грани СDВ). В прямоугольном треугольнике ADH AD=АН=(√3/2)*а (формула, в которой а - сторона треугольника).
В нашем случае АН=2√3. тогда DA=2√3, а
DH=2√6. Площадь боковой поверхности пирамиды равна сумме поверхностей боковых граней Sadc+Sadb+Scdb или
Sбок=2*(1/2)*АС*DA+(1/2)*BC*DH. Или
Sбок=2*(1/2)*4*2√3+(1/2)*4*2√6=4√3(2+√2).
2). а). Высота параллелограмма ВН, лежащая против угла 30°, равна половине гипотенузы АВ, то есть 0,5*а. Вторая высота параллелограмма DK равна соответственно 0,5*3а=1,5*а.
б).Высота из угла В к стороне DC равна ВМ=1,5*а.Угол В1МВ=45° (дано, так как угол между плоскостями А1В1СD (A1DB1) и АВСD - это угол между перпендикулярами ВМ и В1М к линии СD пересечения плоскостей). Значит высота ВВ1 равна ВМ=1,5*а.
в) Sбок=Р*Н, где Р- периметр основания, а Н - высота параллелепипеда. В нашем случае Sбок=8а*1,5*а = 12а².
г) Sполн=Sбок+2*Sосн. Sосн=3а*а*Sinα.
В нашем случае Sосн=3а²*(1/2)=1,5а², а Sполн=12а²+3а²=15а².
Перпендикуляры к линии пересечения АН (высота равностороннего
треугольника АВС) и DН (апофема грани СDВ). В прямоугольном треугольнике ADH AD=АН=(√3/2)*а (формула, в которой а - сторона треугольника).
В нашем случае АН=2√3. тогда DA=2√3, а
DH=2√6. Площадь боковой поверхности пирамиды равна сумме поверхностей боковых граней Sadc+Sadb+Scdb или
Sбок=2*(1/2)*АС*DA+(1/2)*BC*DH. Или
Sбок=2*(1/2)*4*2√3+(1/2)*4*2√6=4√3(2+√2).
2). а). Высота параллелограмма ВН, лежащая против угла 30°, равна половине гипотенузы АВ, то есть 0,5*а. Вторая высота параллелограмма DK равна соответственно 0,5*3а=1,5*а.
б).Высота из угла В к стороне DC равна ВМ=1,5*а.Угол В1МВ=45° (дано, так как угол между плоскостями А1В1СD (A1DB1) и АВСD - это угол между перпендикулярами ВМ и В1М к линии СD пересечения плоскостей). Значит высота ВВ1 равна ВМ=1,5*а.
в) Sбок=Р*Н, где Р- периметр основания, а Н - высота параллелепипеда. В нашем случае Sбок=8а*1,5*а = 12а².
г) Sполн=Sбок+2*Sосн. Sосн=3а*а*Sinα.
В нашем случае Sосн=3а²*(1/2)=1,5а², а Sполн=12а²+3а²=15а².



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili