Вопрос задан 18.02.2021 в 07:31. Предмет Геометрия. Спрашивает Стрекалов Антон.

Точки A,B C и D лежат на окружности, <ABC=42°, <BAC=24°.Найдите <BDC

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Султанова Софія.

Задача имеет два решения.

 \tt \angle BDC=\angle BAC=24^\circ как вписанные углы, опирающиеся на одну и ту же дугу.


Вторая задача.

Градусная мера меньшей дуги ВС:  \tt\breve{BC}=2\angle BAC=2\cdot 24^\circ=48^\circ

Градусная мера большой дуги ВС:  \tt \breve{BC}=360^\circ-48^\circ=312^\circ

 \tt \angle BDC=\frac{1}{2}\cdot312^\circ=  156^\circ



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи, мы можем использовать свойства центрального и углового секторов на окружности.

Из условия известно, что точки A, B, C и D лежат на окружности. Рассмотрим треугольник ABC.

Угол BAC является углом вписанным в дугу BC, поэтому его величина равна половине меры этой дуги. Так как угол BAC равен 24°, то мера дуги BC равна 2 × 24° = 48°.

Также из условия известно, что угол ABC равен 42°. Значит, угол BDC является дополнительным к углу ABC и его величина равна 180° - 42° = 138°.

Таким образом, угол BDC равен 138°.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос