Вопрос задан 24.01.2021 в 22:22. Предмет Геометрия. Спрашивает Мичан Саша.

В прямоугольном треугольнике точка соприкосновения вписанной окружности делит катет на отрезки 3 см

и 5 см. Найти площадь треугольника. ____________________________________________________ У прямокутному трикутнику точка дотику вписаного кола ділить катет на відрізки 3 см і 5 см. Знайти площу трикутника. Напишите пожалуйста не только ответ, но и решение. Заранее спасибо.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кисель Доминика.
Не указано какой именно катет делит точка соприкосновения окружности, так что я намалевал в приложенном файле как будет выглядеть на мой взгляд.
Пусть там точка К делит катет АС на эти самые отрезки 3 и 5 см. Пусть АК=5см, СК=3см.
1) По свойству касательных АК=АМ=5см, СК=СF=3см, а BF=BM=x см.
Тогда AC=AK+CK=5+3=8 см, BC=CF+BF=3+x см, AB=AM+BM=5+x см.
2) По теореме Пифагора имеем AB²=AC²+BC²
(5+x)²=8²+(3+x)²
25+10x+x²=64+9+6x+x²
4x=48
x=12
Площадь прямоугольного треугольника это половина произведения катетов.
S=0.5*AC*BC=0.5*8*(3+12)=60 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос