Вопрос задан 02.11.2020 в 11:51. Предмет Геометрия. Спрашивает Бырда Артём.

Радиус окружности, описанной около прямоугольного треугольника, равен 3 см, а один из его острых

углов равен 60 градусов Найдите высоту треугольника, опущенную на гипотенузу.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Железнов Егор.

Ответ:

Объяснение:

https://ru-static.z-dn.net/files/d41/3f7446e7e43b51e03a363fe45d847da0.jpg


0 0
Отвечает Еремина Саша.

Ответ:

3√3/2 см.

Объяснение:

Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим способом.

1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).

2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).

3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).

4. S = 1/2ab,

S = 1/2• c • h, тогда

1/2•a•b = 1/2• c • h,

ab = ch,

h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос