Вопрос задан 31.10.2020 в 23:20. Предмет Геометрия. Спрашивает Лагутова Алина.

) Вершины В и С треугольника АВС лежат в плоскости \beta . Вершина А ей не принадлежит. Докажите,

что прямая, проходящая через середины отрезков АВ и АС, параллельна плоскости \beta .
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Свиридов Андрей.
Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в этой плоскости.

Обозначим середину отрезка AB за D, середину отрезка AC за E. Тогда отрезок DE - средняя линия треугольника, отрезок DE параллелен стороне BC. Тогда и прямая DE параллельна прямой BC. Точки B и C лежат в плоскости β, тогда прямая BC лежит в β. Прямая DE параллельна прямой, лежащей в β, тогда DE параллельна β, что и требовалось доказать.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос