Вопрос задан 26.10.2020 в 03:35. Предмет Геометрия. Спрашивает Рошташ Петя.

В основании прямой призмы лежит прямоугольный треугольник с катетами 5 и 12. Боковые ребра призмы

равны 3/П . Найдите площадь боковой поверхности описанного цилиндра
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кирсанов Дима.

Ответ: 39 (ед. площади)

Объяснение: Боковые ребра прямой призмы перпендикулярны основанию. Высота прямой призмы равна длине бокового ребра.

  Отношение катетов ∆ АВС – АС:ВС=12:5, что указывает на то, что его стороны из Пифагоровых троек с отношением сторон 12:5:13. Гипотенуза АВ=13 (можно проверить по т.Пифагора).

. Гипотенуза АВ=13, она же - диаметр основания. => R=6,5, а высота цилиндра равна высоте призмы, т.е. длин Центром основания цилиндра, описанного около призмы, в основании которой прямоугольный треугольник, является середина гипотенузы. Гипотенуза AB=2R=d=13, высота цилиндра равна высоте призмы, т.е. длине её бокового ребра. Ѕ(бок. цил.)=π•d•h

Ѕ(бок)=π•13•3/π=39 (ед. площади).


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос