
Высота опущенная на гипотенузу прямоугольного треугольника делит его на два треугольника площади
которых соответственно 6 см и 54 см. найти гипотенузу треугольника

Ответы на вопрос

Обозначим отрезки, на которые высота делит гипотенузу, за x и y, причём x<y. Высоту обозначим за h. Высота делит треугольник на два прямоугольных треугольника. Площадь одного из них равна 1/2xh, а площадь другого 1/2yh, так как в каждом катетами является высота и один из отрезков, на которые разделена гипотенуза. Зная, что 1/2xh=6, 1/2yh=54, получаем 9/2xh=54, 9/2xh=1/2yh, откуда 9x=y. Известно, что h²=xy (верно для высоты прямоугольного треугольника, проведённой к гипотенузе), значит, h²=x*9x=9x², то есть h=3x. Теперь рассмотрим треугольник с площадью 6. Его катеты равны x и 3x, значит, площадь равна 1/2*x*3x=3/2x². То есть, 3/2x²=6 и x=2. Тогда один из отрезков равен 2, а второй равен 9x=9*2=18. То есть гипотенуза разделена на отрезки 2 и 18, тогда её длина равна 2+18=20.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili