Вопрос задан 21.10.2020 в 07:45. Предмет Геометрия. Спрашивает Панова Софья.

На рисунке отрезки BC и AD параллельны и равны. Докажите, что точка M является серединой отрезка BD.


0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Муткаев Аюш.
ΔMBC = ΔMDA т.к. BC = AD; уг.В = угD - накрест лежащие при параллельных ВС и АD и секущей BD; уг С = уг А - накрест лежащие при параллельных ВС и АD
и секущей АС
Против равных углов в равных треугольниках лежат и равные стороны,
поэтому ВМ = MD, и точка М - середина отрезка ВD, что и требовалось доказать

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос