
Найдите пятую степень числа если у куб равен минус 1/8


Ответы на вопрос

Я попробую ответить на ваш вопрос.
Чтобы найти пятую степень числа, если его куб равен минус 1/8, нужно сначала выразить число через его кубический корень. То есть, если x^3 = -1/8, то x = ^3√(-1/8). Затем, нужно возвести это выражение в пятую степень, используя свойство степеней: (a^b)^c = a^(b*c). То есть, x^5 = (^3√(-1/8))^5 = (-1/8)^(5/3).
Далее, можно упростить это выражение, разделив показатель степени на 3 и взяв кубический корень из числа. То есть, (-1/8)^(5/3) = ^3√((-1/8)^5) = ^3√(-1/32768). Наконец, можно найти приближенное значение этого выражения, используя калькулятор или другие средства. Ответ получается примерно равным -0.0625.
Надеюсь, это помогло вам понять решение задачи. Если вы хотите узнать больше о возведении в степень, вы можете посмотреть эти источники . Спасибо за обращение!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili