Вопрос задан 07.06.2018 в 08:23. Предмет Алгебра. Спрашивает Шеховцова Виктория.

Найдите число членов арифметической прогрессии,разность которой 12,последний член - 15 и сумма всех

членов - 456
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тарасова Катарина.

A[n]=15
S[n]=456

a[n]=a[1]+d*(n-1)
a[1]=a[n]-d*(n-1) 
S[n]=(a[1]+a[n])/2*n

S[n]=(2a[n]-d*(n-1))/2*n
456=(2*15-12(n-1))/2*n
456=(15-6n+6)n
456=21n-6n^2 
3n^2-7n+152=0
D<0

такой арифметической прогрессии не существует иначе.

a[n]=15
a[n-1]=15-12=3
a[n-2]=3-15=-12

только два члена положительные, остальные отрицательные..сумма никак не может при таких данных быть равной 456.


такой арифметической прогрессии не существует.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос