
Вопрос задан 05.06.2018 в 20:45.
Предмет Алгебра.
Спрашивает Торебаева Мими.
Сумма двух натуральных чисел равна 50 а произведение на 11 меньше чем разность их квадратов.найдите
эти числа?

Ответы на вопрос

Отвечает Кузнецова Анастасия.
Пусть одно из искомых чисел х, тогда второе искомое чисел (50-х).
Произведение чисел: х(50-х)=50х-х²
Разность квадратов: х²-(50-х)²=(х-50+х)(х+50-х)=(2х-50)*50=100х-2500
По условию произведение чисел на 11 меньше разности квадратов следовательно:
(100х-2500)-(50х-х²)=11
x²+50x-2500-11=0
x²+50x-2511=0
D=50²+4*2511=12544=112²
x₁=(-50+112)/2=31 50-31=19
x₂=(-50-112)/2=-81- не подходит т.к. речь идет о натуральных числах
Значит искомая пара чисел:
31 и 19


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili