
Вопрос задан 28.05.2020 в 10:57.
Предмет Алгебра.
Спрашивает Джуккаев Тимур.
Доказать что число (m+5n+7)^6*(3m+7n+2)^7 делятся на 64 при любых натуральных m и n


Ответы на вопрос

Отвечает Сорокин Егор.
Чтобы выполнить задание, можно рассмотреть различные случаи чётности и нечётности чисел m и n. Пусть m=2p, n=2q - чётные натуральные числа (p, q - натуральные числа). Тогда (m+5n+7)^6=(2p+10q+7)^6 - нечётное число, а (3m+7n+2)^7=(6p+14q+2)^7=(2*(3p+7q+1))^7=(2^7)*(3p+7q+1)^7=128*(3p+7q+1)^7=64*2*(3p+7q+1)^7 - чётное число, кратное числу 64. Поэтому и заданное число делится на 64 как произведение двух натуральных чисел, одно из которых делится на 64. Остаётся рассмотреть аналогично случаи, когда m=2p+1 - нечётное число, n=2q - чётное число; m=2p - чётное число, n=2q+1 - нечётное число; m=2p+1, n=2q+1 - нечётные натуральные числа.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili