Вопрос задан 15.05.2020 в 11:58. Предмет Алгебра. Спрашивает Сергеев Евгений.

Найдите наименьшее значение суммы корней уравнения х^2+(8a-a^2)x-a^4=0

срочнооооооооооооо!!!!!!!!!!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Великанова Рената.
Используем теорему Виета:
x1+x2=-(8a-a^2)=a^2-8a
находим наименьшее значение суммы корней уравнения, то есть наименьшее значение функции y=a^2-8a
Данная функция - квадратичная и коэффицент перед a^2 положительный => наименьшее значение этой функции в вершине: a вершины=-(-8)/2=4; y=16-32=-16
Ответ: -16
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос