
Вопрос задан 21.04.2020 в 04:17.
Предмет Алгебра.
Спрашивает Сорокин Илья.
Найти площадь фигуры, ограниченной линиями a) y=2x^2; y=2x


Ответы на вопрос

Отвечает Водеников Илья.
Нарисуй графики этих функций и ты увидишь, что нижней функцией будет y=x^2, а верхней y=2x, затем найдём точки пересечения приравнял y=x^2 и y=2x, получим x^2=2x, x*(x-2)=0, то есть данные функции пересекаются в 2 точках, x=0 и x=2, затем вычисляем двойной интеграл , интеграл(от 0 до 2)по dx (интеграл(от 2x до x^2) по dy), поставляя пределы получаем интеграл(от 0 до 2) по dx*(x^2-2x), затем интегрируем и снова подставляем пределы и получаем ((x^3/3)-x^2)в подстановке от 0 до 2, совершаем подстановку и получаем 0^3/3-0^2-(2^3/3-2^2)=-(-4/3)=4/3 Ответ: S=4/3


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili