
Вопрос задан 16.04.2020 в 04:35.
Предмет Алгебра.
Спрашивает Исакова Настя.
√(x+3-4√x-1)+√(x+8-6√x-1)=1 Помогите решить) Желательно с подробным объяснением.


Ответы на вопрос

Отвечает Туринов Миша.
1. Возводим обе части уравнения в квадрат, уходят знаки корня, а "1" остаётся единицой.
2. Раскрываем скобки без изменения знаков у всех членов уравнения.
3. Снова возводим обе части уравнения в квадрат и получаем квадратное уравнение.
4. Далее решаем как обыкновенное квадратное уравнение.
2. Раскрываем скобки без изменения знаков у всех членов уравнения.
3. Снова возводим обе части уравнения в квадрат и получаем квадратное уравнение.
4. Далее решаем как обыкновенное квадратное уравнение.



Отвечает Исаенко Иван.
Я не согласна с приведенным решением, поскольку новичок не знает, как возводить в квадрат сумму: там, помимо квадратов, есть еще удвоенное произведение. Попробуйте-ка поработать с этим удвоенным произведением.
Я бы предложила такое решение: ввести искусственную переменную у, только сначала нужно написать область определения нашего х: поскольку выражение (х - 1) находится под знаком корня, то это выражение не может быть отрицательным, т.е. (х - 1) ≥0, х ≥ 1 (это пригодится попозже).
Далее: √(х - 1) = у ⇒ х - 1 = y^2 ⇒ x = y^2 + 1 (ввели новую переменную и подставляем ее в уравнение):
√(y^2 + 1 + 3 - 4y) + √(y^2 + 1 + 8 - 6y) = 1
√(y^2 - 4y + 4) + √(y^2 - 6y + 9) = 1
√(y - 2)^2 + √(y - 3)^2 = 1
(y - 2) + (y - 3) = 1
y - 2 + y - 3 = 1
2y = 6 ⇒ y = 3
Теперь возвращаемся к нашей переменной х:
√(x - 1) = 3 - возводим обе части уравнения в квадрат:
х - 1 = 9 ⇒ х = 10 (сверяем с областью определения нашего х, который должен быть ≥ 1, наш ответ соответствует, так что он правильный).
Я бы предложила такое решение: ввести искусственную переменную у, только сначала нужно написать область определения нашего х: поскольку выражение (х - 1) находится под знаком корня, то это выражение не может быть отрицательным, т.е. (х - 1) ≥0, х ≥ 1 (это пригодится попозже).
Далее: √(х - 1) = у ⇒ х - 1 = y^2 ⇒ x = y^2 + 1 (ввели новую переменную и подставляем ее в уравнение):
√(y^2 + 1 + 3 - 4y) + √(y^2 + 1 + 8 - 6y) = 1
√(y^2 - 4y + 4) + √(y^2 - 6y + 9) = 1
√(y - 2)^2 + √(y - 3)^2 = 1
(y - 2) + (y - 3) = 1
y - 2 + y - 3 = 1
2y = 6 ⇒ y = 3
Теперь возвращаемся к нашей переменной х:
√(x - 1) = 3 - возводим обе части уравнения в квадрат:
х - 1 = 9 ⇒ х = 10 (сверяем с областью определения нашего х, который должен быть ≥ 1, наш ответ соответствует, так что он правильный).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili