
Даю 43 бала. 2х^2+8х-111<(3х-5)(2х+6) (5х+1)(3х-1)>(4х-1)(х+2) -решите пожалуйста. мне нужно
полное решение.

Ответы на вопрос

раскрываем скобки вовтором неравенстве , получаем 11х^2-9х+1> 0 решаем его и получаем ответ (- бесконечности до 2,25-корень квадратный из 37)u(2,25+корень квадратный из 37 до + бесконечности)



Problem Statement
You have provided an inequality expression that needs to be solved:2x^2 + 8x - 111 < (3x - 5)(2x + 6) + (5x + 1)(3x - 1) < (4x - 1)(x + 2)
Let's solve this inequality step by step.
Step 1: Expand the Expressions
First, let's expand the expressions on both sides of the inequality:2x^2 + 8x - 111 < 6x^2 + 4x - 30 + 15x^2 - 2x - 5 < 4x^2 + 7x - 2
Simplifying further, we get:
2x^2 + 8x - 111 < 21x^2 + 2x - 35 < 4x^2 + 7x - 2
Step 2: Combine Like Terms
Next, let's combine like terms on each side of the inequality:-19x^2 + 6x - 76 < 0 < 3x^2 - 5x - 33
Step 3: Solve the Quadratic Inequalities
To solve the quadratic inequalities, we need to find the values of x that make each quadratic expression positive and negative.For the left side of the inequality (-19x^2 + 6x - 76 < 0), we need to find the values of x that make the quadratic expression negative. We can do this by finding the roots of the quadratic equation (-19x^2 + 6x - 76 = 0) and determining the intervals where the quadratic expression is negative.
For the right side of the inequality (3x^2 - 5x - 33 < 0), we need to find the values of x that make the quadratic expression negative. We can do this by finding the roots of the quadratic equation (3x^2 - 5x - 33 = 0) and determining the intervals where the quadratic expression is negative.
Step 4: Find the Roots of the Quadratic Equations
Let's find the roots of the quadratic equations:For the left side of the inequality (-19x^2 + 6x - 76 = 0), the roots are approximately x = -1.26 and x = 3.16.
For the right side of the inequality (3x^2 - 5x - 33 = 0), the roots are approximately x = -2.33 and x = 4.33.
Step 5: Determine the Intervals
Now, let's determine the intervals where each quadratic expression is negative:For the left side of the inequality (-19x^2 + 6x - 76 < 0), the quadratic expression is negative in the interval approximately x ∈ (-1.26, 3.16).
For the right side of the inequality (3x^2 - 5x - 33 < 0), the quadratic expression is negative in the interval approximately x ∈ (-2.33, 4.33).
Step 6: Final Solution
Finally, let's combine the intervals where each quadratic expression is negative:-1.26 < x < 3.16
This is the solution to the given inequality.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili