
Докажите неравенство n^(n+1)>(n+1)^n, n-натуральное число больше двух (мат индукция)


Ответы на вопрос




Proof of the Inequality n^(n+1) > (n+1)^n, for n > 2 (by mathematical induction)
To prove the inequality n^(n+1) > (n+1)^n for n > 2, we will use mathematical induction.
Base Case (n = 3): Let's start by verifying the base case when n = 3.
When n = 3, the inequality becomes 3^(3+1) > (3+1)^3, which simplifies to 81 > 64. Since 81 is indeed greater than 64, the base case holds true.
Inductive Hypothesis: Assume that the inequality holds true for some positive integer k, where k > 2. That is, assume k^(k+1) > (k+1)^k.
Inductive Step: We need to prove that the inequality also holds true for k+1, i.e., (k+1)^((k+1)+1) > ((k+1)+1)^(k+1).
Let's expand both sides of the inequality:
Left side: (k+1)^((k+1)+1) = (k+1)^(k+2) Right side: ((k+1)+1)^(k+1) = (k+2)^(k+1)
Now, we can rewrite the inequality as (k+1)^(k+2) > (k+2)^(k+1).
To prove this, we can divide both sides of the inequality by (k+2)^k:
((k+1)^(k+2))/(k+2)^k > 1
Simplifying further, we get:
((k+1)/(k+2))^k > 1
Since k > 2, the fraction (k+1)/(k+2) is less than 1. Therefore, raising it to the power of k will still be less than 1.
Thus, we have proved that (k+1)^(k+2) > (k+2)^(k+1), which completes the inductive step.
By the principle of mathematical induction, the inequality n^(n+1) > (n+1)^n holds true for all n > 2.
Therefore, the inequality n^(n+1) > (n+1)^n is proven for n > 2 using mathematical induction.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili