Вопрос задан 15.01.2020 в 14:10. Предмет Алгебра. Спрашивает Ярыгин Андрей.

Найдите промежутки возрастания функции f(x)=x+5

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гребёнкин Денис.
F(х)=х^5+5                                                                                                               (x)=5x^4                                                                                                                5x^4=0                                                                                                                     x=0
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы найти промежутки возрастания функции f(x) = x + 5, мы должны проанализировать производную функции. Производная показывает нам, как функция меняется в разных точках.

Нахождение производной функции f(x) = x + 5

Производная функции f(x) = x + 5 равна производной от x плюс производной от константы 5. Поскольку производная константы равна нулю, мы получаем:

f'(x) = 1

Определение промежутков возрастания функции

Промежутки возрастания функции f(x) между двумя точками определяются значениями производной функции в этих точках. Если производная положительна в точке, то функция возрастает в этой области. Если производная отрицательна в точке, то функция убывает в этой области.

Анализ производной функции f'(x) = 1

Поскольку производная функции f(x) = x + 5 всегда равна 1, это означает, что функция f(x) возрастает везде. То есть, у функции f(x) нет промежутков убывания.

Вывод

Функция f(x) = x + 5 возрастает на всей числовой прямой.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос