 
Вопрос задан 28.05.2018 в 23:26.
Предмет Алгебра.
Спрашивает Макаревич Даша.
Составить уравнение прямой, проходящей через точку А (4; 2) перпендикулярно прямой х - 2у - 3 = 0.
y= 2x-6 y= -2x+6 y= 3x-2 y= -x/2+3 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Мухьянова Камилла.
                
     Если заданную прямую х - 2у - 3 = 0 выразить относительно у, получим у равнение с коэффициентом:
у = (1/2)х - (3/2). Здесь к = (1/2).
Перпендикулярная прямая имеет коэффициент к2 перед х, равный -1/к.
к2 = -2.
Теперь найдём параметр в, подставив в уравнение у= (к2)х + в координаты точки А (4; 2).
в = у - (к2)х = 2 - (-2)*4 = 2 + 8 = 10.
Ответ: уравнение прямой, проходящей через точку А (4; 2) перпендикулярно прямой х - 2у - 3 = 0 имеет вид у = -2х + 10.

 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			