
Проинтегрировать функциюxsinx/cos^3x


Ответы на вопрос




Integration of x*sin(x)/cos^3(x)
To integrate the function x*sin(x)/cos^3(x), we can use the technique of integration by parts. Integration by parts is a method that allows us to integrate the product of two functions by differentiating one function and integrating the other.
Let's denote the function x*sin(x)/cos^3(x) as f(x). To integrate f(x), we can choose u = x and dv = sin(x)/cos^3(x) dx. By differentiating u and integrating dv, we can find du and v, respectively.
Differentiating u = x, we get du = dx. Integrating dv = sin(x)/cos^3(x) dx, we can rewrite it as dv = sin(x)*cos^(-3)(x) dx.
Now, we can apply the formula for integration by parts, which states:
∫ u dv = u*v - ∫ v du
Using this formula, we can integrate f(x) as follows:
∫ x*sin(x)/cos^3(x) dx = x * ∫ sin(x)*cos^(-3)(x) dx - ∫ (∫ sin(x)*cos^(-3)(x) dx) dx
Let's evaluate each integral step by step.
Step 1: Evaluating the first integral
The first integral, ∫ sin(x)*cos^(-3)(x) dx, can be evaluated using a substitution. Let's substitute u = cos(x), which gives us du = -sin(x) dx. Rearranging the equation, we have dx = -du/sin(x).
Substituting these values into the integral, we get:
∫ sin(x)*cos^(-3)(x) dx = ∫ -du/u^3
Integrating -du/u^3, we have:
∫ -du/u^3 = u^(-2)/2 + C1
Substituting u = cos(x) back into the equation, we get:
∫ sin(x)*cos^(-3)(x) dx = cos^(-2)(x)/2 + C1
Step 2: Evaluating the second integral
Now, let's evaluate the second integral, ∫ (∫ sin(x)*cos^(-3)(x) dx) dx.
Using the result from Step 1, we can rewrite the second integral as:
∫ (∫ sin(x)*cos^(-3)(x) dx) dx = ∫ (cos^(-2)(x)/2 + C1) dx
Expanding the integral, we get:
∫ (cos^(-2)(x)/2 + C1) dx = ∫ cos^(-2)(x)/2 dx + ∫ C1 dx
The integral of C1 dx is simply C1x.
To evaluate the integral of cos^(-2)(x)/2, we can use the trigonometric identity:
cos^(-2)(x) = sec^2(x)
Using this identity, the integral becomes:
∫ cos^(-2)(x)/2 dx = ∫ sec^2(x)/2 dx
The integral of sec^2(x) is tan(x), so we have:
∫ sec^2(x)/2 dx = (1/2)∫ sec^2(x) dx = (1/2)tan(x) + C2
Combining the results, we have:
∫ (∫ sin(x)*cos^(-3)(x) dx) dx = (1/2)tan(x) + C2 + C1x
Step 3: Final result
Finally, substituting the results from Step 1 and Step 2 into the original integral, we get:
∫ x*sin(x)/cos^3(x) dx = x * (cos^(-2)(x)/2 + C1) - (1/2)tan(x) - C2 - C1x
Simplifying the expression, we have:
∫ x*sin(x)/cos^3(x) dx = (x*cos^(-2)(x))/2 - (1/2)tan(x) - C1x - C2
Therefore, the integral of x*sin(x)/cos^3(x) is given by:
∫ x*sin(x)/cos^3(x) dx = (x*cos^(-2)(x))/2 - (1/2)tan(x) - C1x - C2


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili