Вопрос задан 11.01.2020 в 12:17. Предмет Алгебра. Спрашивает Базаркина Анастасия.

Cos18*cos12-sin18sin12=

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сердитых Саша.
Решение во вложении.
Ответ:  \frac{ \sqrt{3} }{2}
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этого выражения, мы можем воспользоваться формулой для нахождения синуса и косинуса суммы углов. Формула для произведения синусов и косинусов суммы углов выглядит следующим образом:

cos(A - B) = cos(A)cos(B) - sin(A)sin(B)

Здесь A и B - углы.

В вашем выражении: A = 18 градусов B = 12 градусов

Подставив значения в формулу, получаем:

cos(18 - 12) = cos(6)

Теперь нам нужно найти значение косинуса угла 6 градусов. Для этого можно воспользоваться таблицей значений косинуса или калькулятором. Вот значение косинуса 6 градусов:

cos(6°) ≈ 0,9945

Таким образом, выражение

cos(18)cos(12) - sin(18)sin(12)

равно

0,9945

Поэтому:

Cos(18)cos(12) - sin(18)sin(12) = 0,9945

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос