
Вопрос задан 06.04.2018 в 08:34.
Предмет Алгебра.
Спрашивает Седин Сергей.
Велосипедист едет сначала 2 минуты с горы, а затем 6 минут в гору. Обратный путь он проделывает за
13 минут. Во сколько раз скорость велосипедиста при движении с горы больше, чем скорость при движении в гору? (Считайте, что скорость движения с горы одинакова в обоих направлениях; это же относится и к скорости движения в гору.) Можно с таблицей?

Ответы на вопрос

Отвечает Кяро Анна.
пусть х км/ч - скорость велосепедиста с горы
тогда у км/ч - скорость велосепедиста в гору
расстояние с горы = 3х
расстояние в гору = 5у
известно, что обратный путь он проделал за 16 минут, НО с той же скоростью
составляем уравнене:
3х/у + 5у/х=16
введё1м новую переменную т=х/у
тогда уравнение примет вид:
3т + 5/т=16
приводим к общему знаменателю и получаем:
3т во второй -16т + 5 = 0
решаем квадратное неравенство с помощью дискриминанта:
дискриминант = 256 - 60 = 196
т первое = 16+14/6=5
т второе = 16 - 14/6= 1/3 (посторонний корень, так как т= х/у, а х > у - по условию задачи)
т = 5, а так как т = х/у, то => что х > у в 6 раз
ответ: в 6 раз скорость велосепедиста при движении с горы больше, чем скорость в гору


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili