
Вопрос задан 01.07.2019 в 12:33.
Предмет Алгебра.
Спрашивает Повираева Олечка.
Решите одно уравнение, только очень-очень подробно 3sin2x+cos2x=cos^2x


Ответы на вопрос

Отвечает Кучеров Дмитрий.
3sin2x+cos2x=cos²x
3*(2sinx*cosx)+(cos²x-sin²x)=cos²x
6sinx*cosx+cos²x-sin²x-cos²x=0
6sinx*cosx-sinx²x=0 |:cos²x≠0
(6sinx*cos)/cos²x-sin²x/cos²x=0
6tgx-tg²x=0. tgx*(6-tgx)=0
tgx=0 или 6-tgx=0
1. tgx=0, x₁=πn, n∈Z
2. 6-tgx=0, tgx=6. x₂=arctg6+πn, n∈Z
3*(2sinx*cosx)+(cos²x-sin²x)=cos²x
6sinx*cosx+cos²x-sin²x-cos²x=0
6sinx*cosx-sinx²x=0 |:cos²x≠0
(6sinx*cos)/cos²x-sin²x/cos²x=0
6tgx-tg²x=0. tgx*(6-tgx)=0
tgx=0 или 6-tgx=0
1. tgx=0, x₁=πn, n∈Z
2. 6-tgx=0, tgx=6. x₂=arctg6+πn, n∈Z


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili