
Вопрос задан 17.06.2019 в 06:05.
Предмет Алгебра.
Спрашивает Финапетов Максим.
Помогите пожалуйста!! Нужно найти точку максимума функции y=√29+2x -x^2


Ответы на вопрос

Отвечает Сермягин Илья.
1) находим производную
производная=y=(корень(29)+2x -x^2)'=0+2-2х=2-2х=2(1-х)
2)находим точки при которых производная равна нолю
2(1-х)=0
1-х=0
1=х
получили одну точку, Данная точка делит ось Ох на два промежутка 1. (- беск;1), 2. (1, беск) (ОСЬ НАРИСОВАТЬ ОБЯЗАТЕЛЬНО)
Для определения знака производной функции, из первого интервала возьмем 0, а из второго - соответственно 2
f'(0)=1-0=1
f'(2)=1-2=-1
Видим что точка 1 является точкой максимума функции, найдем значение функции в этой точке
f(1)=корень(29)+2*1-1^2=корень(29)+2-1=корень(29)+1=(
=приблизительно)=6,39
Ответ: максимум функции =f(1)=корень(29)+1=(приблизительно)=6,39
производная=y=(корень(29)+2x -x^2)'=0+2-2х=2-2х=2(1-х)
2)находим точки при которых производная равна нолю
2(1-х)=0
1-х=0
1=х
получили одну точку, Данная точка делит ось Ох на два промежутка 1. (- беск;1), 2. (1, беск) (ОСЬ НАРИСОВАТЬ ОБЯЗАТЕЛЬНО)
Для определения знака производной функции, из первого интервала возьмем 0, а из второго - соответственно 2
f'(0)=1-0=1
f'(2)=1-2=-1
Видим что точка 1 является точкой максимума функции, найдем значение функции в этой точке
f(1)=корень(29)+2*1-1^2=корень(29)+2-1=корень(29)+1=(
=приблизительно)=6,39
Ответ: максимум функции =f(1)=корень(29)+1=(приблизительно)=6,39


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili