Вопрос задан 15.06.2019 в 07:09. Предмет Алгебра. Спрашивает Зарембо Ярослав.

Определите промежутки выпуклости вверх (вниз) графика функции y=5x - sin2x. Пожалуйста!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Дорош Алевтина.
Y = 5*x-sin(2*x)
 1.  Находим интервалы возрастания и убывания.
Первая производная равна:.
f'(x) = -2cos(2x)+5
Находим нули функции. Для этого приравниваем производную к нулю
-2cos(2x)+5 = 0
Для данного уравнения корней нет.
 2. Находим интервалы выпуклости и вогнутости функции.
Вторая производная равна:
f''(x) = 4sin(2x)
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
4sin(2x) = 0
Откуда точки перегиба:
x1 = 0
На интервале (-∞ ;0)  f''(x) < 0,  функция выпукла
  На интервале (0; +∞)   f''(x) > 0,    функция вогнута

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос