Вопрос задан 11.05.2019 в 08:45. Предмет Алгебра. Спрашивает Федорова Ксения.

Вычислите кординаты точек пересечения с осью y тех касательных к графику функции y=(3x-1)/(x+8),

которые образуют угол 45 с осью x.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Колобродова Алина.
Общая уравнение касательной к графику функции: y=f(x0)+f'(x0)(x-x0)
а - координата точки касания.
Так как tgα между касательной и осью икс равен f'(x0),
y=x+4/x-5
y'=-9/(x-5)²
-9/(x-5)²=tg135
-9/(x-5)²=-1
(x-5)²=9
x²-10x+25-9=0
x²-10x+16=0
D=100-4*16=100-64=36
x1=10+6/2=8
x2=10-6/2=2
Две касательные образуют в точках х=8 и х=2  с графиком функции угол в 135 градусов.
Составляем первое уравнение:
f(8)=8+4/8-5=12/3=4
f'(8)=-9/(8-5)²=-9/3²=-9/9=-1
y=4-1(x-8)
y=12-x
Второе:
f(2)=2+4/2-5=6/-3=-2
f'(2)=-9/(2-5)²=-9/(9)=-1
y=-2+-1(x-2)
y=-2-х+2
у=-х
Находим координаты пересечения с осью игрек, то есть подставляем в уравнения вместо х нуль.
1) 12-0=у
у=12
2) -1*0=у
у=0
Ответ: (0;12) и (0;0).
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы найти точки пересечения касательных с осью y, нужно найти значения функции y при x=0.

Подставим x=0 в уравнение функции: y = (3*0 - 1)/(0 + 8) = -1/8

Таким образом, точка пересечения касательных с осью y имеет координаты (0, -1/8).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос