
Решите систему уравнений


Ответы на вопрос




Solving the System of Equations
To solve the system of equations, we will use the given equations and find the values of x and y that satisfy both equations.
The system of equations is as follows:
Equation 1: 2x - y = 7 Equation 2: x^2 - xy = 12
To solve this system, we can use various methods such as substitution, elimination, or graphing. Let's use the substitution method.
From Equation 1, we can express y in terms of x: y = 2x - 7
Now, substitute this value of y into Equation 2: x^2 - x(2x - 7) = 12
Simplifying the equation: x^2 - 2x^2 + 7x = 12 -x^2 + 7x = 12 x^2 - 7x + 12 = 0
Now, we can factorize the quadratic equation: (x - 3)(x - 4) = 0
Setting each factor equal to zero: x - 3 = 0 or x - 4 = 0
Solving for x: x = 3 or x = 4
Now, substitute these values of x back into Equation 1 to find the corresponding values of y.
For x = 3: y = 2(3) - 7 y = 6 - 7 y = -1
For x = 4: y = 2(4) - 7 y = 8 - 7 y = 1
Therefore, the solution to the system of equations is x = 3, y = -1 and x = 4, y = 1.
Note: The solution to the system of equations is not unique. There are two possible solutions: (3, -1) and (4, 1).
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili