
Из пункта А в пункт В,расстояние между которыми 26 км ,выехал велосипедист.Одновременно с ним из В
в А выехал мотоциклист со скоростью,на 28 км\ч большей скорости велосипедиста.Они встретились через 0.5 ч. Найдите скорость мотоциклистаю На каком расстоянии от пункта А произошла встреча?

Ответы на вопрос

х - скорость велосипедиста
х+28 - скорость мотоциклиста
х/2 - расстояние, которое проехал до встречи велосипедист
(х+28)/2 - расстояние, которое проехал до встречи мотоциклист
х/2+(х+28)/2=26
х+х+28=52
2х=24
х=24:2=12
х/2=12:2=6 (км) - расстояние, которое проехал до встречи велосипедист (то есть на таком расстоянии от пункта А произошла встреча)



Problem Analysis
We are given that a cyclist and a motorcyclist start from points A and B, respectively, which are 26 km apart. The motorcyclist travels at a speed 28 km/h faster than the cyclist. They meet after 0.5 hours. We need to find the speed of the motorcyclist and the distance from point A where they meet.Solution
Let's assume the speed of the cyclist is x km/h. Since the motorcyclist is traveling 28 km/h faster, their speed is x + 28 km/h.We know that the time taken by both the cyclist and the motorcyclist to meet is 0.5 hours.
To find the distance from point A where they meet, we can use the formula:
Distance = Speed × Time
Let's calculate the distance from point A where they meet:
Distance = (Speed of the cyclist) × (Time taken by both to meet)
Distance = x × 0.5
The distance from point A where they meet is also the distance traveled by the cyclist. So, the distance traveled by the cyclist is 0.5x km.
Since the total distance between points A and B is 26 km, we can write the equation:
Distance traveled by the cyclist + Distance traveled by the motorcyclist = Total distance
0.5x + (0.5x + 28) = 26
Simplifying the equation:
x + x + 28 = 52
2x = 24
x = 12
Therefore, the speed of the cyclist is 12 km/h.
To find the speed of the motorcyclist, we can substitute the value of x into the equation:
Speed of the motorcyclist = Speed of the cyclist + 28
Speed of the motorcyclist = 12 + 28
Speed of the motorcyclist = 40 km/h
So, the speed of the motorcyclist is 40 km/h.
To find the distance from point A where they meet, we can substitute the value of x into the equation:
Distance from point A = Speed of the cyclist × Time taken by both to meet
Distance from point A = 12 × 0.5
Distance from point A = 6 km
Therefore, the motorcyclist and the cyclist meet at a distance of 6 km from point A.
Answer
The speed of the motorcyclist is 40 km/h. The meeting point is 6 km from point A.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili