Вопрос задан 05.05.2019 в 03:51. Предмет Алгебра. Спрашивает Зозулина Вера.

Arccos(-1/3)=??????????????

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Стороженко Юлия.
Arccos(-1/3)=П-arccos1/3
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного уравнения, мы должны найти значение угла, чей косинус равен -1/3.

Функция arccos(x) возвращает угол, чей косинус равен x. Таким образом, мы ищем угол, чей косинус равен -1/3.

Для нахождения этого угла, мы можем использовать треугольник с косинусом в качестве соответствующего отношения.

Давайте представим прямоугольный треугольник ABC, где угол B равен искомому углу, а сторона AC равна 1, а сторона BC равна -1/3.

Так как косинус равен отношению прилежащей стороны к гипотенузе, то мы можем найти длину стороны AB, используя теорему Пифагора.

AB = √(AC^2 - BC^2) = √(1^2 - (-1/3)^2) = √(1 - 1/9) = √(8/9) = √8/√9 = 2√2/3

Таким образом, мы нашли длину стороны AB, которая равна 2√2/3.

Теперь мы можем использовать тангенс, чтобы найти искомый угол B. Тангенс равен отношению противоположной стороны к прилежащей стороне.

Тангенс B = BC/AB = (-1/3)/(2√2/3) = -1/(2√2)

Теперь мы можем найти значение угла B, используя обратный тангенс (функцию arctan).

arctan(-1/(2√2)) = -19.47 градусов (округленно до двух десятичных знаков)

Таким образом, arccos(-1/3) равно -19.47 градусов.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос