Разложите на множители : а) а +2sqrt а б) sqrt 6 - sqrt 18 в) х^2 -15 г) 4-4sqrt х +х д) 3х + 6
sqrt ху + sqrt х + 2 sqrt уОтветы на вопрос
а) а+2√а = √а(√а+2)
б) √6-√18 = √6(1-√3)
в) х²-15 = (х-√15)(х+√15)
г) 4-4√х+х = (2-√х)²
д) 3х+6√(ху)+√х+2√у = (3х+√х) + (6√(ху)+2√у) =
√х(3√х+1) + 2√у(3√х+1) = (3√х+1)(√х+2√у)
c)
d)
e)
Разложение на множители
а) `а + 2sqrt(а)`
Мы можем заметить, что `а` и `2sqrt(а)` имеют общий множитель `sqrt(а)`. Таким образом, мы можем разложить выражение на множители следующим образом:
`а + 2sqrt(а) = sqrt(а)(sqrt(а) + 2)`
б) `sqrt(6) - sqrt(18)`
Для начала, мы можем упростить выражение внутри корней:
`sqrt(6) = sqrt(2 * 3) = sqrt(2) * sqrt(3)`
`sqrt(18) = sqrt(2 * 9) = sqrt(2) * sqrt(9) = sqrt(2) * 3`
Теперь мы можем разложить выражение на множители:
`sqrt(6) - sqrt(18) = sqrt(2) * sqrt(3) - sqrt(2) * 3`
Мы можем вынести общий множитель `sqrt(2)`:
`sqrt(2) * (sqrt(3) - 3)`
в) `x^2 - 15`
Это выражение не может быть разложено на множители, поскольку не имеет рациональных корней.
г) `4 - 4sqrt(x) * x`
Мы можем факторизовать это выражение, вынеся `4` и `sqrt(x)` как общий множитель:
`4 - 4sqrt(x) * x = 4(1 - sqrt(x) * x)`
д) `3x + 6sqrt(x) + sqrt(x) + 2sqrt(y)`
Мы можем сгруппировать подобные члены вместе:
`3x + sqrt(x) + 6sqrt(x) + 2sqrt(y)`
Затем мы можем вынести общий множитель `sqrt(x)`:
`sqrt(x)(3 + 1 + 6) + 2sqrt(y)`
Или просто:
`10sqrt(x) + 2sqrt(y)`
Вывод
Таким образом, мы разложили данные выражения на множители:
а) `а + 2sqrt(а)` = `sqrt(а)(sqrt(а) + 2)`
б) `sqrt(6) - sqrt(18)` = `sqrt(2) * (sqrt(3) - 3)`
в) `x^2 - 15` - неразложимое выражение
г) `4 - 4sqrt(x) * x` = `4(1 - sqrt(x) * x)`
д) `3x + 6sqrt(x) + sqrt(x) + 2sqrt(y)` = `10sqrt(x) + 2sqrt(y)`
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
