Вопрос задан 03.05.2019 в 08:42. Предмет Алгебра. Спрашивает Ломакина Кристина.

Решить уравнение : (х - 4)(х + 4)- х (х - 2)=0.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Штукина Екатерина.
X^2-16-x^2+2x=0
-16+2x=0
2x=16
x=8
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим данное уравнение пошагово:

1. Раскроем скобки в уравнении:

(х - 4)(х + 4) - х(х - 2) = 0

Раскрываем первую пару скобок:

х * х + х * 4 - 4 * х - 4 * 4 - х * (х - 2) = 0

Упростим выражение:

х^2 + 4х - 4х - 16 - х^2 + х * 2 = 0

2. Сократим подобные слагаемые:

х^2 - 16 + 2х = 0

3. Перенесем все слагаемые на одну сторону уравнения:

х^2 + 2х - 16 = 0

4. Теперь мы имеем квадратное уравнение вида ax^2 + bx + c = 0, где a = 1, b = 2 и c = -16.

Для решения квадратного уравнения можно использовать формулу дискриминанта:

x = (-b ± √(b^2 - 4ac)) / (2a)

5. Подставим значения a, b и c в формулу дискриминанта:

x = (-2 ± √(2^2 - 4 * 1 * -16)) / (2 * 1)

x = (-2 ± √(4 + 64)) / 2

x = (-2 ± √68) / 2

6. Выполним вычисления:

x = (-2 ± √68) / 2

x = (-2 ± √(4 * 17)) / 2

x = (-2 ± 2√17) / 2

x = -1 ± √17

Таким образом, решением уравнения (х - 4)(х + 4) - х(х - 2) = 0 являются два значения x: x = -1 + √17 и x = -1 - √17.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос