
Cистема: x^2-y^2=2a+3 xy=a+1При каких a система имеет два решения?


Ответы на вопрос

при а больше , либо равно нулю.



Solution for the System x^2 - y^2 = 2a + 3 and xy = a + 1
To find the values of a for which the system has two solutions, we can use the discriminant of the quadratic equation formed by the given system.
The discriminant of a quadratic equation ax^2 + bx + c = 0 is given by D = b^2 - 4ac. If the discriminant is greater than zero, the quadratic equation has two distinct real solutions.
Calculating the Discriminant for the Given System
The given system of equations is: 1. x^2 - y^2 = 2a + 3 2. xy = a + 1
From equation (2), we can express x in terms of y as: x = (a + 1) / y.
Substituting this value of x into equation (1), we get: ((a + 1) / y)^2 - y^2 = 2a + 3
Multiplying through by y^2 to clear the fraction, we get: (a + 1)^2 - y^4 = (2a + 3)y^2
This equation is a quadratic in y^2. The discriminant of this quadratic equation will help us determine the values of a for which the system has two solutions.
Finding the Values of a for Two Solutions
The discriminant of the quadratic equation (a + 1)^2 - y^4 = (2a + 3)y^2 is given by D = (2a + 3)^2 - 4((a + 1)^2)(-1).
For the system to have two solutions, the discriminant D must be greater than zero.
Conclusion
By solving the inequality (2a + 3)^2 - 4((a + 1)^2)(-1) > 0, we can find the values of a for which the given system has two solutions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili