Пешеход прошёл расстояние от пункта С до пункта М за 3 часа. Возвращаясь, он первые 16 км шёл с той
же скоростью, а затем снизил скорость на 1 км/ч, вследствие чего затратил на обратный путь на 4 минуты больше, чем на путь из С в М. Чему равно расстояние между пунктами С и М ?Ответы на вопрос
Problem Analysis
We are given that a pedestrian walked from point C to point M in 3 hours. On the return journey, the pedestrian walked the first 16 km at the same speed and then reduced the speed by 1 km/h. As a result, the return journey took 4 minutes longer than the journey from C to M. We need to find the distance between points C and M.
Solution
Let's assume the distance between points C and M is d km.
From the given information, we can determine the following:
- The pedestrian walked the first 16 km at the same speed. - The pedestrian reduced the speed by 1 km/h for the remaining distance (d - 16) km.
We can calculate the time taken for the journey from C to M and the return journey using the formula:
Time = Distance / Speed
For the journey from C to M: - Time = 3 hours - Distance = d km - Speed = x km/h (let's assume the initial speed is x km/h)
So, we have the equation:
3 = d / x For the return journey: - Time = 3 hours and 4 minutes = 3 + 4/60 hours = 3.067 hours (approximately) - Distance = d km - Speed = (x - 1) km/h (speed reduced by 1 km/h)
So, we have the equation:
3.067 = 16 / x + (d - 16) / (x - 1) Now, we can solve these two equations to find the value of d.
Calculation
Let's solve equations and to find the value of d.
From equation we can express x in terms of d:
x = d / 3 Substituting equation into equation we get:
3.067 = 16 / (d / 3) + (d - 16) / ((d / 3) - 1)
Simplifying the equation further:
3.067 = 48 / d + (3d - 48) / (d - 3)
Multiplying through by d(d - 3) to eliminate the denominators:
3.067d(d - 3) = 48(d - 3) + (3d - 48)d
Expanding and simplifying:
3.067d^2 - 9.201d = 48d - 144 + 3d^2 - 48d
Combining like terms:
0.067d^2 - 54.201d + 144 = 0
Using the quadratic formula:
d = (-b ± √(b^2 - 4ac)) / (2a)
where a = 0.067, b = -54.201, and c = 144.
Solving this quadratic equation, we find two possible values for d: d1 and d2.
Calculation Results
Using the quadratic formula, we find the following values for d:
- d1 ≈ 0.9 km - d2 ≈ 213.6 km
Since the distance between points C and M cannot be negative, we can discard the negative value (d1).
Therefore, the distance between points C and M is approximately 213.6 km.
Answer
The distance between points C and M is approximately 213.6 km.
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
