
2cos в квадрате x - 5 cosx+2=0 ребят помогите решить!!)))


Ответы на вопрос

а решается объяснить?
cos (x) = 1/2
x= pi/3 + 2pi*k/ kпрринадлежит множеству целых чисел



Solving the Equation 2cos^2(x) - 5cos(x) + 2 = 0
To solve the equation 2cos^2(x) - 5cos(x) + 2 = 0, we can use various methods such as factoring, quadratic formula, or trigonometric identities. Let's explore these methods:
Method 1: Factoring
To factor the equation, we need to find two values that multiply to give 2 and add up to -5. However, factoring may not be the most straightforward method for this equation.
Method 2: Quadratic Formula
The quadratic formula can be used to solve any quadratic equation of the form ax^2 + bx + c = 0, where a, b, and c are constants. The quadratic formula is given by:
x = (-b ± √(b^2 - 4ac)) / (2a)
For the equation 2cos^2(x) - 5cos(x) + 2 = 0, we can identify a = 2, b = -5, and c = 2. Plugging these values into the quadratic formula, we get:
x = (-(-5) ± √((-5)^2 - 4(2)(2))) / (2(2))
Simplifying further:
x = (5 ± √(25 - 16)) / 4
x = (5 ± √9) / 4
x = (5 ± 3) / 4
This gives us two possible solutions:
x = (5 + 3) / 4 = 8 / 4 = 2
x = (5 - 3) / 4 = 2 / 4 = 0.5
Therefore, the solutions to the equation 2cos^2(x) - 5cos(x) + 2 = 0 are x = 2 and x = 0.5.
Method 3: Trigonometric Identities
We can also use trigonometric identities to solve the equation. By rewriting cos^2(x) in terms of 1 - sin^2(x), we can transform the equation into a quadratic equation in terms of sin(x). Let's see how:
2cos^2(x) - 5cos(x) + 2 = 0
Using the identity cos^2(x) = 1 - sin^2(x), we can substitute:
2(1 - sin^2(x)) - 5cos(x) + 2 = 0
Simplifying further:
2 - 2sin^2(x) - 5cos(x) + 2 = 0
-2sin^2(x) - 5cos(x) + 4 = 0
Now, we can use the identity sin^2(x) = 1 - cos^2(x) to rewrite the equation:
-2(1 - cos^2(x)) - 5cos(x) + 4 = 0
Simplifying further:
-2 + 2cos^2(x) - 5cos(x) + 4 = 0
2cos^2(x) - 5cos(x) + 2 = 0
We have arrived at the original equation. This means that the solutions obtained using the quadratic formula method are valid.
Therefore, the solutions to the equation 2cos^2(x) - 5cos(x) + 2 = 0 are x = 2 and x = 0.5.
Please note that the solutions may be subject to further verification, and there may be additional solutions depending on the range of x.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili