Вопрос задан 01.04.2019 в 19:25. Предмет Алгебра. Спрашивает Никоненко Иван.

Расстояние между станциями А и В равно 240 км. Из В в А вышел поезд. Через 30 мин навстречу ему из

А вышел поезд со скоростью, иа 12 км/ч большей. Найдите скорость каждого поезда, если известно, что они встретились на середине пути.Пожалуйста!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Самсонова Божена.
30 мин=0,5 ч
Пусть скорость первого поезда х км/ч, тогда скорость второго поезда (х+12) км/ч. Поскольку поезда встретились на середине, то каждый из них проехал 240:2=120 км, до встречи. Составим и решим уравнение:
 \frac{120}{x}- \frac{120}{x+12}= \frac{1}{2}    \\  \\  \frac{240(x+12-x)}{x(x+12)}=1 \\  \\ x(x+12)=240*12 \\  \\  x^{2} +12x-2880=0 \\  \\ D=12^2+4*2880=11664=108^2 \\  \\ x_1= \frac{-12+108}{2}=48 \\  \\ x_2= \frac{-12-108}{2}=-60\ \textless \ 0

Значит скорость первого поезда 48 км/ч
48+12=60 км/ч скорость второго поезда

Ответ 48 км/ч и 60 км/ч 
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос