
Вопрос задан 05.05.2018 в 19:30.
Предмет Алгебра.
Спрашивает Карпухин Алёша.
Диагонали ромба ABCD пересекаются в точке О. На стороне АВ взята точка К так, что ОК ⊥ АВ, АК = 2
см, ВК= 8 см. Найдите диагонали ромба.

Ответы на вопрос

Отвечает Добрых Дима.
Из ΔОАК: ОК² = АО²-АК², ОК²=АО²-4
из ΔОКВ: ОК²=ОВ²-КВ², ОК² = ОВ²-64
т.к. равны левые части, то приравниваем правые:
АО² - 4 = ОВ² - 64 (1)
из ΔАОВ: АО²+ ОВ² =АВ²
АО² + ОВ² = 100 (2)
Решаем систему из (1) и (2):
АО² - 4 = ОВ² - 64
АО² + ОВ² = 100
выразим первое ур-е и сложим со вторым:
АО² - ОВ² =- 60
АО² + ОВ² = 100
2АО² =40
АО²=20, АО = √20=2√5, след-но, диагональ АС=4√5
ОВ²=100-АО²
ОВ² = 100 -20 = 80, ОВ = √80=4√5, след-но, диагональ BD = 8√5


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili