Вопрос задан 09.03.2019 в 17:16. Предмет Алгебра. Спрашивает Ахметжан Аякоз.

Найти вероятность того , что наудачу взятое двухзначное число окажется кратным либо 3 , либо 5,

либо тому и другому одновременно.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шостак Никита.
По формуле классической вероятности:
p=m/n
n=90 ( количество двузначных чисел)

Числа делящиеся на 3:
12; 15;... 99 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a_n=a_1+d(n-1)
a₁=12
d=15-12=3
99=12+3·(n-1)    ⇒87=3(n-1)    n-1=29    n=30

Числа делящиеся на 5:
10; 15;20; 25; 30;...; 95 - таких чисел 30
Можно найти их количество по формуле n-го члена арифметической прогрессии
a_n=a_1+d(n-1)
a₁=10
d=15-10=5
95=10+5·(n-1)    ⇒85=5(n-1)    n-1=19    n=20

Чисел, которые одновременно делятся и на 3 и на 5 всего 6:
15;30;45;60;75 и 90

m=30+20-6=44

p=44/90=22/45


0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос