
Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно
63 км. На следующий день он отправился обратно со скоростью на 2 км/ч больше прежней. По дороге он сделал остановку на 2 ч. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч.

Ответы на вопрос

63/х = 63/(х+2) +2
63х+126=63х +2x^2+4x
2x^2+4x-126=0
x^2+2x-63=0
х1=7
х2= -9 не подходит
Ответ: 7 км/ч



Problem Analysis
We are given that a cyclist travels from city A to city B at a constant speed and then returns from city B to city A the next day at a speed that is 2 km/h faster. The cyclist takes a 2-hour break during the return journey. We need to find the speed of the cyclist on the way from city A to city B.Solution
Let's assume the speed of the cyclist on the way from city A to city B is x km/h.On the way from city A to city B, the cyclist covers a distance of 63 km at a speed of x km/h. Therefore, the time taken for this journey is given by:
Time from A to B = Distance / Speed = 63 km / x km/h
On the way back from city B to city A, the cyclist covers the same distance of 63 km but at a speed that is 2 km/h faster, i.e., (x + 2) km/h. However, the cyclist takes a 2-hour break during this journey. Therefore, the time taken for this journey is given by:
Time from B to A = (Distance / Speed) + Break Time = (63 km / (x + 2) km/h) + 2 hours
According to the problem, the time taken for the return journey is the same as the time taken for the journey from city A to city B. Therefore, we can equate the two expressions for time:
63 km / x km/h = (63 km / (x + 2) km/h) + 2 hours
Let's solve this equation to find the value of x.
Solving the Equation
To solve the equation, we can cross-multiply and simplify:63 km * (x + 2) km/h = 63 km * x km/h + 2 hours * x km/h
Expanding the equation:
63x + 126 = 63x + 2x
Simplifying the equation:
126 = 2x
Dividing both sides by 2:
x = 63
Answer
The speed of the cyclist on the way from city A to city B is 63 km/h.Explanation
The cyclist travels from city A to city B at a speed of 63 km/h. On the way back from city B to city A, the cyclist travels at a speed of 65 km/h (63 km/h + 2 km/h) after a 2-hour break. The total time taken for the return journey is the same as the time taken for the journey from city A to city B.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili