
Запишите в ответе номера верных равенств1) (c-4)(4+c)=16-c^22) -(6-5c)(5c+6)=36-25c^23)
(c+3)(3-4c)=9-9c-4c^24) (6-c)^2=36-6c+c^2

Ответы на вопрос

c^2-16≠16-c^2
-(6-5c)(5c+6)=36-25c^2
-(36-25c^2)=36-25c^2
25c^2-36≠36-25c^2
(c+3)(3-4c)=9-9c-4c^2
3c-4c^+9-12c=9-9c-4c^2
9-9c-4c^2=9-9c-4c^2
(6-c)^2=36-6c+c^2
36-12c+c^2
следовательно верные:3



у меня так получилось



1) (c-4)(4+c) = 16 - c^2 Expanding the expression using the distributive property: (c-4)(4+c) = 4(c-4) + c(c-4) = 4c - 16 + c^2 - 4c = c^2 - 16
So, the equation simplifies to: c^2 - 16 = 16 - c^2
Adding c^2 to both sides of the equation: 2c^2 - 16 = 16
Adding 16 to both sides of the equation: 2c^2 = 32
Dividing both sides of the equation by 2: c^2 = 16
Taking the square root of both sides of the equation: c = ±4
Therefore, the solutions to the equation are c = 4 and c = -4.
2) (6-5c)(5c+6) = 36 - 25c^2 Expanding the expression using the distributive property: (6-5c)(5c+6) = 6(5c+6) - 5c(5c+6) = 30c + 36 - 25c^2 - 30c = 36 - 25c^2
So, the equation simplifies to: 36 - 25c^2 = 36 - 25c^2
This equation is an identity, which means that it holds true for all values of c. Therefore, there are infinite solutions to this equation.
3) (c+3)(3-4c) = 9 - 9c - 4c^2 Expanding the expression using the distributive property: (c+3)(3-4c) = 3(c+3) - 4c(c+3) = 3c + 9 - 4c^2 - 12c = -4c^2 - 9c + 9
So, the equation simplifies to: -4c^2 - 9c + 9 = 9 - 9c - 4c^2
Adding 4c^2 to both sides of the equation: -9c + 9 = 9 - 9c
Subtracting 9 from both sides of the equation: -9c = 0
Dividing both sides of the equation by -9: c = 0
Therefore, the solution to the equation is c = 0.
4) (6-c)^2 = 36 - 6c + c^2 Expanding the expression using the distributive property: (6-c)^2 = (6-c)(6-c) = 6(6-c) - c(6-c) = 36 - 6c - 6c + c^2 = 36 - 12c + c^2
So, the equation simplifies to: 36 - 12c + c^2 = 36 - 6c + c^2
Subtracting 36 from both sides of the equation: -12c = -6c
Dividing both sides of the equation by -6: c = 0
Therefore, the solution to the equation is c = 0.
In summary, the solutions to the given equations are: 1) c = 4, c = -4 2) Infinite solutions 3) c = 0 4) c = 0


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili