Вопрос задан 24.02.2019 в 17:14. Предмет Алгебра. Спрашивает Нестерова Лида.

Найдите наименьшее и наибольшее значение функции y=-4/x а) [-4;-2] б) (1;4) в) [2;+бесконечность)

г) (-4;-2)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Акименко Кирилл.
Функция возрастающая ⇒ у наиб. при х наиб.
а) у наиб. = 2
 у наим. = 1
б) у наиб. не сущ.
у наим. не сущ.
в) у наим. = -2
у наиб. не сущ.
г) у наиб. не сущ.
у наим. не сущ.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти наименьшее и наибольшее значение функции \(y = -4/x\) на указанных интервалах, мы можем проанализировать поведение функции и выяснить, где она достигает минимума и максимума.

Функция \(y = -4/x\) имеет особенность в точке \(x = 0\), так как в знаменателе появляется ноль, что делает функцию неопределённой в этой точке. Таким образом, интервал \((-4, -2)\) не включает точку \(x = 0\), и функция на этом интервале будет непрерывной.

а) Интервал \([-4, -2]\):

На этом интервале функция отрицательна, так как знаменатель отрицателен. При увеличении значения \(x\) в пределах от \(-4\) до \(-2\), значения функции уменьшаются. Следовательно, наименьшее значение функции будет в точке \(-2\).

б) Интервал \((1, 4)\):

На этом интервале функция также отрицательна, и при увеличении значения \(x\) от \(1\) до \(4\) значения функции уменьшаются. Следовательно, наименьшее значение функции будет в точке \(4\).

в) Интервал \((2, +\infty)\):

На этом интервале функция положительна, так как знаменатель положителен. При увеличении значения \(x\) от \(2\) до бесконечности значения функции уменьшаются, стремясь к нулю. Следовательно, наименьшее значение функции будет в сторону бесконечности.

г) Интервал \((-4, -2)\):

На этом интервале функция снова отрицательна, и при увеличении значения \(x\) от \(-4\) до \(-2\) значения функции уменьшаются. Таким образом, наименьшее значение функции будет в точке \(-2\).

Таким образом, наименьшее значение функции \(y = -4/x\) равно \(-2\), а наибольшее значение функции не ограничено и стремится к нулю при \(x\), стремящемся к бесконечности.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос