Вопрос задан 22.02.2019 в 17:26. Предмет Алгебра. Спрашивает Коцюба Юля.

ПОМОГИТЕ решить:2 в степени (n-5) > 1,5 - показательное неравенство

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузьменко Аня.
2^{n-5} > 1.5\\\\
2^{n-5} > 2^{\log_{2}{1.5}}\\\\
n - 5 > \log_{2}{1.5}\\\\
\boxed{n > \log_{2}{1.5} + 5}



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения неравенства 2 в степени (n-5) > 1,5, мы можем использовать логарифмы. Давайте разберемся подробнее.

Решение:

1. Применим логарифм по основанию 2 к обеим сторонам неравенства: ``` log2(2^(n-5)) > log2(1,5) ``` Здесь мы используем свойство логарифма, согласно которому loga(b^c) = c * loga(b).

2. Упростим левую сторону неравенства, используя свойство логарифма loga(a^b) = b: ``` (n-5) > log2(1,5) ```

3. Теперь нам нужно найти значение log2(1,5). Давайте воспользуемся калькулятором: ``` log2(1,5) ≈ 0,58496 ```

4. Подставим это значение обратно в неравенство: ``` (n-5) > 0,58496 ```

5. Добавим 5 к обеим сторонам неравенства: ``` n > 5 + 0,58496 ```

6. Упростим правую сторону неравенства: ``` n > 5,58496 ```

Ответ:

n > 5,58496.

Пожалуйста, обратите внимание, что это приближенное значение и может быть округлено до нужного количества знаков после запятой.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос